首页> 外文OA文献 >Design of a Very Compact CNN Classifier for Online Handwritten Chinese Character Recognition Using DropWeight and Global Pooling
【2h】

Design of a Very Compact CNN Classifier for Online Handwritten Chinese Character Recognition Using DropWeight and Global Pooling

机译:用于在线手写汉语的非常紧凑的CNN分类器的设计   使用DropWeight和全局池进行字符识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Currently, owing to the ubiquity of mobile devices, online handwrittenChinese character recognition (HCCR) has become one of the suitable choice forfeeding input to cell phones and tablet devices. Over the past few years,larger and deeper convolutional neural networks (CNNs) have extensively beenemployed for improving character recognition performance. However, itssubstantial storage requirement is a significant obstacle in deploying suchnetworks into portable electronic devices. To circumvent this problem, wepropose a novel technique called DropWeight for pruning redundant connectionsin the CNN architecture. It is revealed that the proposed method not onlytreats streamlined architectures such as AlexNet and VGGNet well but alsoexhibits remarkable performance for deep residual network and inceptionnetwork. We also demonstrate that global pooling is a better choice forbuilding very compact online HCCR systems. Experiments were performed on theICDAR-2013 online HCCR competition dataset using our proposed network, and itis found that the proposed approach requires only 0.57 MB for storage, whereasstate-of-the-art CNN-based methods require up to 135 MB; meanwhile theperformance is decreased only by 0.91%.
机译:当前,由于移动设备的普及,在线手写汉字识别(HCCR)已成为向手机和平板电脑设备提供输入的合适选择之一。在过去的几年中,为了提高字符识别性能,已经广泛使用了更大,更深的卷积神经网络(CNN)。然而,其大量的存储需求是将此类网络部署到便携式电子设备中的重大障碍。为了解决这个问题,我们提出了一种称为DropWeight的新技术,用于修剪CNN架构中的冗余连接。结果表明,该方法不仅可以很好地处理AlexNet,VGGNet等简化的架构,而且在深度残差网络和初始网络中表现出卓越的性能。我们还证明,对于建立非常紧凑的在线HCCR系统,全局池化是更好的选择。使用我们建议的网络对ICDAR-2013在线HCCR竞争数据集进行了实验,发现该建议的方法仅需要0.57 MB的存储空间,而基于CNN的最新方法需要的最大存储空间为135 MB。同时性能仅下降0.91%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号